Managing for cottonwood-willow riparian forests via physical process restoration

Julie Stromberg¹ and Sharon Lite²
Plant Biology Department¹ and
Geography Department²
Arizona State University
Tempe AZ

Southwestern Riparian Ecosystems: Anthropogenic Stressors

Hydrologic alterations Ground water decline Surface water decline Flood suppression Flood timing change Water quality changes Salinization Nutrient enrichment Land use changes Livestock grazing Urbanization

Southwestern riparian ecosystems: Vegetation changes

Vegetation Composition Changes

Concerns About Loss of I Changes to Riparian Vegetation

Loss of desired ecosystem functions

Loss of wildlife habitat

I Reduction in plant species diversity

 Aesthetic changes, loss of recreational opportunities

Reduction in flood buffering and groundwater recharge functions

Restoration of Riparian Areas

- Goal: Restore and maintain hydromesic, pioneer tree species (e.g., cottonwoods and willows) and their functions.
- Options:
 - Removal of exotic species
 - Restoration of physical processes

Restoration Option 1: Focus on Exotic Species Removal

Exotic species abundance

Resource reduction, disturbance regime alteration, other environmental change

Loss of native species and ecosystem functions

Saltcedar

Tamarix ram**o**sissima

T. chinensis

T. ramosissima x T. chinensis

Fremont cottonwood

Populus

fremontii

Methods for Exotic Species Removal

- Manipulating biotic interactions
 - Biocontrol insects
- Chemical
 - Herbicides. Aerial spraying of Arsenal, ground application of Round-Up
- Physical removal
 - Bulldozers, fire

Chinese leaf beetle (*Diorhabda elongata*)

Concerns with Exotic Species Removal

I Species removal alone is not a guarantee of ecosystem recovery

I Species removal
without other
restorative efforts may
harm existing biota or
alter ecosystem
functions

Southwestern willow flycatcher (Empidonax traillii extimus)

Spatial and temporal heterogeneity

Restoration Option 2: Ecosystem Model - Emphasis on Physical Processes and Conditions

Restoration Option 2: Restoring Ecosystem Processes

Resource reduction, disturbance regime alteration, other environmental change Exotic species abundance

Loss of native species and ecosystem functions

Saltcedar

Tamarix ram**o**sissima

T. chinensis

T. ramosissima x T. chinensis Fremont cottonwood

Populus

fremontii

Pioneer Tree Establishment Conditions

- Fall, winter, or spring floods to mobilize and deposit sediments (geomorphic process of seed bed preparation)
- Slowly receding spring floods during seed dispersal period (hydrologic process of soil wetting for germination)

Pioneer Tree Adult Survivorship Conditions

Along San Pedro River, cottonwoods and willows were more abundant than saltcedar at sites where groundwater was shallow (<3 m) and stable (<0.6 m annual fluctuation) (Lite and Stromberg, in prep.)

Environmental Conditions Favoring Cottonwood or Saltcedar

	Cottonwood	Saltcedar
<u>Hydrology</u>		
Ground water depth-adults	<3 m	>3 m
Ground water fluctuation	<0.7 m	>0.7 m
Soil moisture- seedlings	Moist	Dry
Flood timing- germination	Spring	Late spring/summer
Flood frequency- seedling	Frequent?	Infrequent?
Water quality		
Salinity-germination	<5 dS/m	>5 dS/m
Salinity-plant growth	<2 dS/m	>2 dS/m
Nutrient content-seedlings	Low N/P?	High N/P?
Herbivory		
Livestock grazing -seedlings	No grazing	Grazing

- 1. Species-based hypothesis:
 - I Observation: Low plant biodiversity in saltcedar patches, on flood-suppressed rivers (e.g, Lower Colorado)
 - I Interpretation: Saltcedar reduces biodiversity, by causing environmental changes

2. Ecosystem-based hypothesis:

- Observation: Higher understory plant diversity in saltcedar patches than cottonwood patches on free-flowing San Pedro River (Stromberg 1998; Bagstad et al. in prep)
- Interpretation: Flood suppression on regulated rivers reduces plant diversity and allows for proliferation of saltcedar

Example of Ecosystem Restoration via

Restoration of Physical Processes

- Conservation/mitigation purchase by TNC/USBR of Three-links farm along undammed San Pedro River, Arizona (6 river miles, 2,185 acres)
- Retirement of irrigated agriculture (historic pumping of 3,000 acre-feet per year)
- Predicted biohydrologic effects:
 - Restore perennial flows to 14 river miles
 - Cottonwood-willow regeneration after El-nino floods
 - Restoration of wetland herbaceous perennials
- Restoration cost: \$2.8 million, \$200,000 per river mile

Constraints: What If Processes Can Not be Fully Restored?

- Seed bed formation: Geomorphic process substitution
 - Use bulldozers to create channel depressions
 - Take advantage of bare agricultural fields or areas devegetated by stream dewatering
- Seed germination
 - Planned spring flood release from dam
 - Spring irrigation pulse from water control structures
 - Addition of seeds

Truckee River, Nevada: Spring flood for cottonwood regeneration

Considerations When Clearing Existing Vegetation

- Assess existing and projected physical site conditions, to determine potential for survivorship of species of 'higher functional value'
- Assess long-term maintenance requirements
- Step-wise, slow approach, to avoid large-scale (if temporary) loss of habitat for existing animal biota
- Adequate monitoring

Land and water management actions that influence relative abundance of saltcedar vs. Fremont cottonwood & Goodding willow Saltcedar Cottonwood-Willow

